首页> 外文OA文献 >Performance of the finite volume method in solving regularised Bingham flows: inertia effects in the lid-driven cavity flow
【2h】

Performance of the finite volume method in solving regularised Bingham flows: inertia effects in the lid-driven cavity flow

机译:有限体积法求解正则Bingham的性能   流动:盖子驱动的腔体流动中的惯性效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We extend our recent work on the creeping flow of a Bingham fluid in alid-driven cavity, to the study of inertial effects, using a finite volumemethod and the Papanastasiou regularisation of the Bingham constitutive model[J. Rheology 31 (1987) 385-404]. The finite volume method used belongs to avery popular class of methods for solving Newtonian flow problems, which usethe SIMPLE algorithm to solve the discretised set of equations, and havematured over the years. By regularising the Bingham constitutive equation it iseasy to extend such a solver to Bingham flows since all that this requires isto modify the viscosity function. This is a tempting approach, since itrequires minimum programming effort and makes available all the existingfeatures of the mature finite volume solver. On the other hand, regularisationintroduces a parameter which controls the error in addition to the gridspacing, and makes it difficult to locate the yield surfaces. Furthermore, theequations become stiffer and more difficult to solve, while the discontinuityat the yield surfaces causes large truncation errors. The present work attemptsto investigate the strengths and weaknesses of such a method by applying it tothe lid-driven cavity problem for a range of Bingham and Reynolds numbers (upto 100 and 5000 respectively). By employing techniques such as multigrid, localgrid refinement, and an extrapolation procedure to reduce the effect of theregularisation parameter on the calculation of the yield surfaces (Liu et al.J. Non-Newtonian Fluid Mech. 102 (2002) 179-191), satisfactory results areobtained, although the weaknesses of the method become more noticeable as theBingham number is increased.
机译:我们使用有限体积法和宾厄姆本构模型的Papanastasiou正则化,将对宾厄姆流体在滑动驱动腔中的蠕变流动的最新研究扩展到惯性效应的研究[J. Rheology 31(1987)385-404]。所使用的有限体积方法属于解决牛顿流问题的各种常用方法,这些方法使用SIMPLE算法来求解离散的方程组,并且这些方法已经发展了多年。通过对宾厄姆本构方程进行正则化,很容易将此类求解器扩展到宾厄姆流,因为这仅需要修改粘度函数。这是一种诱人的方法,因为它需要最少的编程工作并可以使用成熟的有限体积求解器的所有现有功能。另一方面,正则化引入了除网格间距外还控制误差的参数,并使得难以定位屈服面。此外,等式变得更僵硬并且更难以解决,而屈服面的不连续性会导致较大的截断误差。本工作试图通过将这种方法应用于一定范围的Bingham和Reynolds数(分别高达100和5000)的盖驱动腔问题来研究这种方法的优缺点。通过采用多网格,局部网格细化和外推程序等技术来减少正则化参数对屈服面计算的影响(Liu等人,J。Non-Newtonian Fluid Mech。102(2002)179-191),尽管随着宾厄姆数的增加,该方法的缺点变得更加明显,但仍获得了令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号